Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.16	Б1.В.16 Технология микросхем и микросборок							
наименование ,	дисциплины (модуля) в соответствии с учебным планом							
Направление подготовки / специальность 11.03.03 Конструирование и технология электронных средств								
Направленность (прос	филь)							
11.03.03.31 Проект	ирование и технология радиоэлектронных средств							
Форма обучения	очная							
Год набора	2021							

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили
кандидат технических наук, Доцент, Семенова О.В.
попжность инипиацы фамициа

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

обучить студентов современной технологии электронных компонентов и интегральных схем.

1.2 Задачи изучения дисциплины

К задачам изучения дисциплины, в соответствии с требованиями к бакалаврам, относятся:

получение знаний по физико-технологическим основам процессов производства изделий электронной компонентной базы, особенностям проведения отдельных технологических операций;

развитие и углубление профессиональных компетенций на теоретическом и прикладном уровнях;

формирование и закрепление навыков разработки технологических процессов изготовления электронной компонентной базы интегральных микросхем.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине						
ПК-3: Способен выполнять ра	счет и проектирование электронных приборов,						
схем и устройств различного ф	ункционального назначения в соответствии с						
техническим заданием с испол	ьзованием средств автоматизации						
проектирования							
ПК-3.1: Понимает основы	основы проектирования и игзотовления элементов						
проектирования и	микросхем						
конструирования РЭА в	проектировать и и создавать микросхемы различного						
объеме выполняемой функции	назначения						
	навыками проектирования и изготовления микросхем						
ПК-3.2: Работает в САПР	основы проектирования микросхем в САПР						
	проектировать конструкции и технологические						
	процессы изготовления элементов микросхем						
	навыками технологического и приборного						
	моделирования электронных компонентов при						
	проектировани и изготовлении микросхем						
ПК-3.3: Анализирует входные	основные исходные данные для проектирования и						
данные для разработки	разработки технологии изготовления элементов						
документации РЭА	микросхем						
	анализировать исходные данные, техническое						
	задание для разработки конструкторско-						
	технологической документации по изготовлению						
микросхем различного назначения							
	навыками разработки конструкторско-						
	технологической документации по изготовлению						
	микросхем различного применения в соответствии с ЕСКД и ЕСТД						

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		Сем			
Вид учебной работы	Всего, зачетных единиц (акад.час)	1	2		
Контактная работа с преподавателем:	4 (144)				
занятия лекционного типа	1,5 (54)				
практические занятия	0,5 (18)				
лабораторные работы	2 (72)				
Самостоятельная работа обучающихся:	3 (108)				
курсовое проектирование (КП)	Да				
курсовая работа (КР)	Нет				
Промежуточная аттестация (Зачёт) (Экзамен)	1 (36)				

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
№ п/п Модули, темы (разделы) дисциплины		Зан	ятия	Заня	тия семин	типа	Самостоятельная		
	лекционного типа		Семинары и/или Практические занятия		Лабораторные работы и/или Практикумы		работа, ак. час.		
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. Изготовление тонкопленочных гибридно-интегральных с			()						
	1. Введение. Основы электронных технологий. Технология микроэлектроники	2							
	2. Компонентная база интегральных схем	2							
	3. Методы формирования тонкопленочных элементов. Фотолитография. Основные понятия и терминология фотолитографического процесса	2							
	4. Технология фотолитографического процесса. Фоторезисты. Фотошаблоны и методы их изготовления	2							
	5. Основные этапы тонкопленочной технологии. Методы получения тонких пленок	2							
	6. Методы формирования пленок фоторезиста	2							
	7. Методы переноса изображения ИС	2							
	8. Методы формирования топологии ИС	2							

9. Разработка и оформление технологической документации по изготовлению ИС	2			
10. Изготовление испарителя прямого накала резистивного типа для напыления металлических пленок		6		
11. Получение и контроль параметров вакуума		6		
12. Отжиг испарителя прямого накала резистивного типа для напыления металлических пленок		6		
13. Вакуумно-термическое и ионно-плазменное напыление тонких пленок		4		
14. Изучение процесса фотолитографии		6		
15. Создание контактов в микросхемах		4		
16. Сборочно-монтажные операции. Резка пластин на кристаллы		4		
17.			54	
18.				
2. Изготовление полупроводниковых интегральных схем (И	C)			•
1. Исходные материалы и структуры ИС	4			
2. Основные этапы производства ИС	4			
3. Понятие о структуре полупроводниковых ИС и особенности их производства. Частные технологические процессы производства полупроводниковых ИС	4			
4. Обрабатывающая группа технологических процессов изготовления полупроводниковых ИС	4			
5. Легирование в производстве полупроводниковых ИС	4			

6. Сборочно-контрольная группа технологических процессов изготовления полупроводниковых ИС	4				
7. Разработка технологии изготовления биполярных схем и МДП структур	4				
8. Математическое моделирование технологических процессов полупроводниковых приборов и элементов ИС	4				
9. Перспективы развития технологии микроэлектроники	4				
10. Изготовление и отжиг испарителя для напыления диэлектрических пленок			8		
11. Получение жидкого азота			6		
12. Формирование полупроводниковых структур с барьером Шоттки			22		
13. Изучение установки ионноплазменного напыления УРМ 3.279.026. Работа с технической документацией		2			
14. Изучение установки вакуумно-термического напыления УВН-2М-1. Работа с технической документацией		2			
15. Изучение оборудования для процессов фотолитографии. Работа с технической документацией		3			
16. Изучение оборудования резки пластин на модули (Алмаз) и установки контактной сварки (Контакт-3А)		1			
17. Изучение оборудования диффузии и эпитаксии полупроводниковых подложек		2			
18. Изучение установки по получению жидкого азота		2			
19. Изучение установки по получению деионизованной воды		1			

20. Разработка и оформление технологической документации		5			
документации					
21.				54	
22.					
Всего	54	18	72	108	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Семенова О. В. Проектирование микросхем и микропроцессоров: лаб. практикум [для студентов напр. 210100 «Электроника и наноэлектроника», 211000 «Конструирование и технология электронных средств»](Красноярск: СФУ).
- 2. Юзова В. А., Семенова О. В., Харлашин П. А. Материалы и компоненты электронных средств: учеб. пособие для студентов спец. 210200 "Проектирование и технология электронных средств", 210100 "Электроника и микроэлектроника"(Красноярск: СФУ).
- 3. Фенькова Н. Б., Семенова О. В. Интегральные устройства радиоэлектроники. Технология микросхем и микропроцессоров: лаб. практикум [для напр. подг. бакалавров 210100 «Электроника и наноэлектроника» и 211000 «Конструирование и технология электронных средств» по ФГОС ВПО-3](Красноярск: СФУ).
- 4. Семенова О. В. Микроэлектромеханика: лаб. практикум [для напр. подг. бакалавров и специалистов 210200 «Проектирование и технология электронных средств» и 210100 «Электроника и микроэлектроника», спец. 201900 «Микросистемная техника»; для напр. подг. бакалавров 210100 «Электроника и наноэлектроника» и 211000 «Конструирование и технология электронных средств»](Красноярск: СФУ).
- 5. Дрозд О. В., Капулин Д. В. Проектирование микроэлектронных устройств: методические указания по выполнению лабораторных работ [для магистров напр. подготовки 27.04.04 «Управление в технических системах», профиля 27.04.04.01 «Интегрированные системы управления производством»](Красноярск: СФУ).
- 6. Патрушева Т. Н., Семенова О. В. Технология производства электронных средств: электрон. учеб.-метод. комплекс дисциплины(Красноярск: ИПК СФУ).
- 7. Юзова В. А. Материалы и элементы электронной техники: учеб.-метод. пособие по самостоят. работе(Красноярск: СФУ).
- 8. Алексеева Н.А., Фенькова Н.Б., Семенова О.В. Технологические среды в микроэлектронике: метод. указания по лабораторным работам для студентов РТФ(Красноярск: ИПЦ КГТУ).
- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):
- 1. Microsoft Offise.
- 2. Компас-3D.
- 3. Solid Works.
- 4. Altium Designer.

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

- 1. ФГУП «НИИ электронных материалов». Режим доступа http://www.nii-em.ru/home
- 2. Сертификационные центры и испытательные лаборатории при АНО «МЦК». Режим доступа http://www.stroyinf.ru/
- 3. http://www.tstu.ru/
- 4. http://all-ebooks.com/
- 5. http://www.yandex.ru/

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Беспроводной Интернет на территории университета, предоставляющий доступ к электронным словарям и справочникам из учебной аудитории.

Специализированные компьютерные лаборатории.

Библиотека университета.

Методический кабинет для самостоятельной работы со стандартами и другой нормативно-технической документацией.

СD-проектор для показа презентаций и видеофильмов.